\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)
\(=>\dfrac{AC}{6}=\dfrac{5}{12}=>AC=\dfrac{5}{2}cm\)
Ta có \(AB^2+AC^2=BC^2\)
\(=>6^2+\left(\dfrac{5}{2}\right)^2=BC^2\)
\(=>BC^2=\dfrac{169}{4}=>BC=\dfrac{13}{2}cm\)
Ta có AB . AC = AH . BC \(=>6.\dfrac{5}{2}=AH.\dfrac{13}{2}=>AH=\dfrac{30}{13}\)
\(AM=\dfrac{1}{2}AC=\dfrac{5}{4}cm\)
\(BM^2=AB^2+AM^2\)
\(=6^2+\left(\dfrac{5}{4}\right)^2=\dfrac{601}{16}=>BM=\dfrac{\sqrt{601}}{4}cm\)
Đúng 1
Bình luận (0)