Violympic toán 7

HT

Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.Kẻ MD vuông góc với BC tại D.a) Chứng minh tam giác BAD cân.b) Chứng minh BM là đường trung trực của đoạn thẳng AD.c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .d) Chứng minh AD // EC.

NT
16 tháng 2 2021 lúc 17:54

a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔABD có BA=BD(cmt)

nên ΔABD cân tại B(Định nghĩa tam giác cân)

b) Ta có: ΔBAM=ΔBDM(cmt)

nên MA=MD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MD(cmt)

nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)

c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD(cmt)

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)

Suy ra: ME=MC(hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

d) Ta có: ΔAME=ΔDMC(cmt)

nên AE=DC(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DC=BC(D nằm giữa B và C)

mà BA=BD(cmt)

và AE=DC(cmt)

nên BE=BC

Xét ΔBEC có BE=BC(cmt)

nên ΔBEC cân tại B(Định nghĩa tam giác cân)

hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)

Ta có: ΔBAD cân tại B(cmt)

\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)

hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)

Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)

mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị

nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

Bình luận (1)
AC
8 tháng 2 2022 lúc 21:32

cặc ko bít làm

Bình luận (0)

Các câu hỏi tương tự
CC
Xem chi tiết
PD
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
PL
Xem chi tiết
ST
Xem chi tiết
SM
Xem chi tiết