Hình học lớp 7

JP

Cho tam giác ABC vuông ở A, p/g BD (D thuộc AC ). Kẻ AE_|_ BD tại E, AE cát BC ở K

a, tam giác ABK là tam giác gì?

b, Cm DK_|_ BC

c, kẻ AH_|_ BC tại H. Cm Ak là tia p/giác của góc HAC

d, Gọi I là gđ của AH và BD. Cm IK// AC

NT
7 tháng 6 2017 lúc 7:41

a.Xét tam giác ABE và tam giác KBE ta có:

góc ABE = góc KBE (gt)
BE là cạnh chung
góc AEB = góc KEB (gt)
==> tam giác ABE = tam giác KBE (g.c.g)

===>BA = BK ===> tam giác ABK cân tại B (đpcm)
b.Xét tam giác BAD và tam giác BKD
ta có: BD là cạnh chung
góc ABD = góc KBD
Vậy tam giác BAD = tam giác BKD (trường hợp cạnh huyền góc nhọn của tam giác vuông)
Suy ra góc BKD = góc BAD = 90 độ => DK vuông góc BC
c.Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC


d. Ta có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dhnb)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)


Bình luận (0)
DD
7 tháng 6 2017 lúc 9:48

a)Xét tam giác ABE và tam giác KBE
Ta có: góc ABE = góc KBE (giả thiết)
cạnh BE là cạnh chung
góc AEB = góc KEB (giả thiết)
Vậy tam giác ABE = tam giác KBE (trường hợp góc cạnh góc)
Suy ra BA = BK => tam giác ABK cân tại B

b)Xét tam giác BAD và tam giác BKD
ta có: BD là cạnh chung
góc ABD = góc KBD
Vậy tam giác BAD = tam giác BKD (trường hợp cạnh huyền góc nhọn của tam giác vuông)
Suy ra góc BKD = góc BAD = 90 độ => DK vuông góc BC

c: Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC

d : Có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dấu hiệu nhận biết)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)

Chúc bạn học tốt khocroi

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NT
Xem chi tiết
KT
Xem chi tiết
JB
Xem chi tiết
NL
Xem chi tiết
CN
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
TC
Xem chi tiết