Hình học lớp 7

BT

Cho tam giác ABC vuông góc tại A. Gọi d là đường thẳng đi qua C và vuông góc với BC. Tia phân giác của góc B cắt AC ở D và cắt d ở E. Kẻ CH vuông góc với DE (\(H\in DE\)). Chứng minh CH là tia phân giác của góc DCE.

SG
30 tháng 10 2016 lúc 21:33

Ta có hình vẽ:

A B C D H E d

Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)

Vì ABC vuông góc tại A nên góc A = 90o

Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)

=> ABC = 90o - ACB

=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)

=> CBD = 45o - \(\frac{ACB}{2}\)

\(CH\perp DE\) nên CHD = 90o

Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)

=> 45o - \(\frac{ACB}{2}\) + BCH = 90o

=> BCH - \(\frac{ACB}{2}\) = 45o

=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)

=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)

=> BCH - ACB = \(\frac{DCE}{2}\)

=> \(DCH=\frac{DCE}{2}\)

=> CH là tia phân giác của góc DCE (đpcm)

Bình luận (1)
NG
28 tháng 10 2018 lúc 21:46

Xét tam giác ABD và tam giác HCD, ta có:

BAC=CHD

ABD+ADB=90

DCH+HDC=90

Mà ADB=HDC⇒ABD=DCH (1)

⇒Tam giác ABD=tam giác HCD

⇒ABD=DCH

Xét tam giác BCE và tam giác HCE, ta có:

C=H

DBC+BEC=90

HCE+BEC=90

⇒Tam giác BCE= tam giác HCE

⇒DBC=HCE (2)

BD la phân giác của ABC

⇒ABD=DBC (3)

Từ (1) (2) (3) ⇒ DCH=HCE

⇒CH là tia phân giác của góc DCE(đpcm)

Bình luận (0)

Các câu hỏi tương tự
JB
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NP
Xem chi tiết
LV
Xem chi tiết
NP
Xem chi tiết
HL
Xem chi tiết
MS
Xem chi tiết
NN
Xem chi tiết