Bài 3: Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác

SK

Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạn AC

a) So sánh IB với MI + IA, từ đó chứng minh MA + MB < IB +IA

b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB

c) Chứng minh bất đẳng thức MA + MB < CA + CB

TQ
19 tháng 4 2017 lúc 14:13

a) M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

Bình luận (0)