Violympic toán 7

AI

Cho tam giác ABC , gọi M là trung điểm của AC . Vẽ điểm K sao cho BM = MK

a) Chứng minh : AK song song với BC

b) Lấy E thuộc AK và F thuộc BC sao cho AE = FC . Chứng minh : E,M,F thẳng hàng

TD
24 tháng 11 2018 lúc 21:11

a) Xét tam giác BMC và tam giác KMA có:

BM = MK ( gt )

∠BMC = ∠AMK ( 2 góc đối đỉnh )

MC = AM ( M là trung điểm của AC )

\(\Rightarrow\) \(\Delta BMC=\Delta KMA\left(c.g.c\right)\)

⇒ ∠BMC = ∠KAM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong do AC cắt AK và BC

⇒ ẠK // BC

Bình luận (0)
NT
23 tháng 11 2022 lúc 23:25

a: Xét tứ giác ABCK có

M là trung điểm chung của AC và BK

nên ABCK là hình bình hành

b: Xét tứ giác AECF có

AE//CF

AE=FC

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

=>E,F,M thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
MH
Xem chi tiết
NB
Xem chi tiết
AK
Xem chi tiết
TQ
Xem chi tiết
TD
Xem chi tiết
LA
Xem chi tiết
YM
Xem chi tiết
PT
Xem chi tiết