cho tứ giác ABCD . gọi M,N lần lượt là trung điểm AB và CD .cmr:
a) 2\(\overrightarrow{mn}\)=\(\overrightarrow{AC}\)+\(\overrightarrow{BD}\)=\(\overrightarrow{BC}\)+\(\overrightarrow{AD}\)
b)Lấy H trên AD , K trên BC sao cho \(\dfrac{HA}{HD}\)=\(\dfrac{KB}{KC}\). HK cắt MN tại I .cmr I là trung điểm HK
Cho tam giác. Gọi I là trung điểm của BC, K là trung điểm của BI. Chứng minh rằng :
a) \(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\)
b) \(\overrightarrow{AK}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
Cho tam giác ABC. Gọi M là trung điểm AB và N là điểm trên cạnh AC sao cho NC = 2NA.
a) Phân tích vecto \(\overrightarrow{MN}\)theo hai vecto \(\overrightarrow{AB},\overrightarrow{AC}\)
b) Gọi I là trung điểm MN, J là điểm trên cạnh BC sao cho \(\overrightarrow{BI}=x\overrightarrow{BC}\) . Tìm x để ba điểm A, I, J thẳng hàng
Cho A(1;3); B(2;-4); C(-3;5); D(-4;-5)
a) Tìm M sao cho \(2\overrightarrow{AM}+3\overrightarrow{AB}-4\overrightarrow{AC}=\overrightarrow{0}\)
b) Tìm D sao cho tứ giác ADIG là hình bình hành với G trọng tâm tam giác ABC, I trung điểm AC.
c) Tìm giao điểm của hai đoạn thẳng AB và CD
Cho tam giác ABC. Gọi D là điểm xác định bởi : \(\overrightarrow{AD}=\dfrac{3}{4}\overrightarrow{AC}\). I là trung điểm của BD. M là điểm thỏa mãn \(\overrightarrow{BM}=x\overrightarrow{BC},\left(x\in R\right)\)
a) Tính \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) Tính \(\overrightarrow{AM}\) theo \(x,\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Tính \(x\) sao cho A, I, M thẳng hàng
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh rằng :
a) \(\overrightarrow{MN}=\overrightarrow{QP}\)
b) \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\)
Cho tam giác OAB. Gọi M và N lần lượt là trung điểm của OA và OB. Tìm các số m, n sao cho :
a) \(\overrightarrow{OM}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
b) \(\overrightarrow{AN}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
c) \(\overrightarrow{MN}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
d) \(\overrightarrow{MB}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm