Cho Δ ABC cân tại A, có góc A = 120độ. Đường trung trực của các cạnh AB,AC cắt BC lần lượt tại D và E. Chứng minh tam giác ADE là tam đều
Giúp mình với :
Cho tam giác cân AB(AB=AC),góc A>90 độ. Vẽ các đường trung trực của ABvà AC,chúng cắt ABvà ACtại I vàK cắt BC lần lượt tại DvàE
a, Các tam giác DAB và EAC là tam giác gì? Vì sao?
b, Gọi O là giao điểm của ID và KE .Chứng minh ΔAIO=ΔAKO
c,Chứng minh O là trực tâm của tam giác ADB và AEC
Cho tam giác ABC vuông tại A , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
Cho tam giác ABC , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
Cho tam giác ABC nhọn (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2. góc BME +góc B = góc ACB
c) BE=CF
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
cho tam giác ABC. tia phân giác góc ngoài tại đỉnh B , C cắt nhau tại O.từ A kẻ đường thẳng vuông góc với các đường phân giác trên, cắt đường thẳng BC lần lượt tại M,N. Chứng minh AB+AC+BC=MN
Cho tam giác ABC ( AB = AC ) . M là trung điểm của BC . đường thẳng vuông góc với tia phân giác của góc A tại M cắt cạnh AB , AC lần lượt tại E và F . Chưng minh
a) EH = HF
b) 2 góc BME = góc ACB = góc B
c) \(\frac{FE^2}{4}\) + AH2 = AE2
d) BE = CF