Bài giải
Ta có :DE=BD (gt)\(\Rightarrow\dfrac{2}{3}DE=\dfrac{2}{3}BD\)
\(\Rightarrow BI=DE\left(1\right)\)
\(\Rightarrow DE=BD\Rightarrow\dfrac{1}{3}DE=\dfrac{1}{3}BD\Rightarrow ID=DK\)
Do đó : \(\dfrac{1}{3}DE+\dfrac{1}{3}DE+\dfrac{1}{3}DE\)
\(\Rightarrow DE-\dfrac{1}{3}DE=DK+DK\)
\(\Rightarrow\dfrac{2}{3}DE=DK+ID\)
Mà DK=ID \(\Rightarrow KE=IK\left(2\right)\)
Từ (1);(2) ta có:
\(\Rightarrow BI=IK=KE\)