Cho tam giác ABC đều. M, N là trung điểm của AB và AC. Các đường trung trực của AB và AC cắt nhau tại O.
a) CMR: ON = OM
b) Gọi P là trung điểm của BC. CMR: A, O, P thẳng hàng
c) Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = CE. Tính góc DOE
cho tam giác ABC có AB = BC = CA. các đường trung trực của AB,AC cắt nhau tại O. M,N là trung điểm của AB,AC
a. c/m: OM = ON
b. gọi P là trung điẻm của BC. c/m: A,O,P thẳng hàng
c. trên AB lấy D. trên AC lấy E sao cho AD = CE . tính \(\widehat{DOE}\)
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm M sao cho BA=BM. Từ M vẽ đường thẳng vuông góc với BC cắt AC tại E. Trên tia đối của AB lấy điểm K sao cho A là trung điểm của BK. Gọi I là trung điểm của KC, CA cắt BI tại G, KG cắt BC tại N.
Chứng minh NI// BK và NI = AK.
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2