Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

NN

Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H  thuộc BC )

a, Chứng minh rằng HB ‹ HC

b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE

c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK

NT
14 tháng 4 2021 lúc 20:51

a)

Xét ΔABC có \(\widehat{B}>\widehat{C}\)(gt)

mà cạnh đối diện với \(\widehat{B}\) là cạnh AC

và cạnh đối diện với \(\widehat{C}\) là cạnh AB

nên AC>AB(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

hay AB<AC

Xét ΔABC có 

BH là hình chiếu của AB trên BC

CH là hình chiếu của AC trên BC

mà AB<AC(cmt)

nên BH<CH(Định lí quan hệ giữa hình chiếu và đường xiên)

Bình luận (0)
NT
14 tháng 4 2021 lúc 20:52

b) Xét ΔAHD và ΔAED có

AH=AE(gt)

\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))

AD chung

Do đó: ΔAHD=ΔAED(c-g-c)

Suy ra: DH=DE(hai cạnh tương ứng)

Bình luận (0)
NT
14 tháng 4 2021 lúc 20:55

c) Ta có: ΔAHD=ΔAED(cmt)

nên \(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)

mà \(\widehat{AHD}=90^0\)(gt)

nên \(\widehat{AED}=90^0\)

hay DE\(\perp\)AC tại E

Xét ΔHDK vuông tại H và ΔEDC vuông tại E có 

DH=DE(cmt)

\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔHDK=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DK=DC(hai cạnh tương ứng) và HK=EC(hai cạnh tương ứng)

Ta có: AH+HK=AK(H nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AH=AE(gt)

và HK=EC(cmt)

nên AK=AC

hay A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của CK

hay AD\(\perp\)CK(Đpcm)

Bình luận (0)