Hình học lớp 7

CT

Cho tam giác ABC có góc A=60 độ, tia phân giác của góc B cắt AC ở M. tia phân giác của góc C cắt AB ở N. Chứng minh rằng: BN+CM=BC

SG
25 tháng 12 2016 lúc 9:38

Gọi H là giao điểm của NC và BM

Vẽ HK là phân giác BHC => BHK = CHK = BHC/2

Có: A + ABC + ACB = 180o

=> 60o + ABC + ACB = 180o

=> ABC + ACB = 180o - 60o = 120o

=> ABC/2 + ACB/2 = 60o

Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2

Nên HBK + HCK = 60o

=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o

=> BHK = KHC = BHC/2 = 60o

Có: BHN + BHC = 180o ( kề bù)

=> BHN + 120o = 180o

=> BHN = 180o - 120o = 60o

Xét t/g BHK và t/g BHN có:

BHK = BHN = 60o (cmt)

BH là cạnh chung

NBH = KBH (gt)

Do đó, t/g BHK = t/g BHN (g.c.g)

=> BK = BN (2 cạnh tương ứng) (1)

Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)

=> KC = MC (2 cạnh tương ứng) (2)

Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)

 

 

 

Bình luận (0)
TN
13 tháng 7 2017 lúc 8:05

Gọi H là giao điểm của \(\text{NC}\)\(\text{BM}\)

Vẽ HK là phân giác \(\widehat{BHC}\Rightarrow\widehat{BHK}=\widehat{CHK}=\dfrac{\widehat{BHC}}{2}\)

Có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow60^o+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\)

\(\Rightarrow\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=60^o\)

\(\widehat{NBH}=\widehat{HBK}=\dfrac{\widehat{ABC}}{2};\widehat{KCH}=\widehat{MCH}=\dfrac{\widehat{ABC}}{2}\)

Nên \(\widehat{HBK}+\widehat{HCK}=60^o\)

\(\Rightarrow BHC=180^o-\left(HBK+HCK\right)=180^o-60^o=120^o\)

\(\Rightarrow\widehat{BHK}=\widehat{KHC}=\dfrac{\widehat{BHC}}{2}=60^o\)

Có: \(\widehat{BHN}+\widehat{BHC}=180^o\) ( kề bù)

=> BHN + 120o = 180o

=> BHN = 180o - 120o = 60o

Xét t/g BHK và t/g BHN có:

BHK = BHN = 60o (cmt)

BH là cạnh chung

NBH = KBH (gt)

Do đó, t/g BHK = t/g BHN (g.c.g)

=> BK = BN (2 cạnh tương ứng) (1)

Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)

=> KC = MC (2 cạnh tương ứng) (2)

Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
CT
Xem chi tiết
NT
Xem chi tiết
DQ
Xem chi tiết
NP
Xem chi tiết
SG
Xem chi tiết
JB
Xem chi tiết
H24
Xem chi tiết
YH
Xem chi tiết