Hình học lớp 7

NT

Cho tam giác ABC có góc A=60 độ. Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E. Các tia phân giác đó cắt nhau ở I. Chứng minh rằng ID=IE.

BV
5 tháng 12 2017 lúc 10:38

A B C D E I F
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.

Bình luận (2)
AL
18 tháng 4 2022 lúc 20:59

ABCDEIF
Do ˆBAC=60o⇒ˆABC+ˆACB=180o−60o=120oBAC^=60o⇒ABC^+ACB^=180o−60o=120o.
Suy ra 

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
YH
Xem chi tiết
CT
Xem chi tiết
NN
Xem chi tiết
CT
Xem chi tiết
PH
Xem chi tiết
PH
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết