Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 7

NT

Cho tam giác ABC có góc A bằng 90 độ, trên cạnh BC lấy điểm E sao cho BE=BA. Tia phân giác của góc B cắt AC ở D. Trên tia đối của AB lấy điểm K sao cho AK=EC.

a, CMR: ba điem K,D,E thẳng hàng

b, Kéo dài đường thẳng DE cắt AB tại K. CMR AK=EC

NT
4 tháng 6 2022 lúc 23:36

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE

AK=EC

Do đó: ΔADK=ΔEDC

Suy ra: \(\widehat{ADK}=\widehat{EDC}\)

=>\(\widehat{ADK}+\widehat{ADE}=180^0\)

=>K,D,E thẳng hàng

b: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔDAK=ΔDEC

Suy ra: AK=EC

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
NG
Xem chi tiết
TN
Xem chi tiết
PH
Xem chi tiết
LV
Xem chi tiết
NN
Xem chi tiết
DH
Xem chi tiết