Violympic toán 7

NV

Cho tam giác ABC có đường cao ha, hb, hc tỉ lệ thuận với ba số 4;5;6 và chu vi tam giác đó là 37cm. Tính độ dài mỗi cạnh

NT
12 tháng 2 2017 lúc 10:03

Giải:

Gọi 3 cạnh tương ứng của 3 đường cao \(h_a,h_b,h_c\) là a, b, c \(\left(a,b,c>0\right)\)

Ta có: \(\frac{a.h_a}{2}=\frac{b.h_b}{2}=\frac{c.h_c}{2}\)

\(\Rightarrow a.h_a=b.h_b=c.h_c\)

\(\Rightarrow4a.\frac{h_a}{4}=5b.\frac{h_b}{5}=6c.\frac{h_c}{6}\)

\(\frac{h_a}{4}=\frac{h_b}{5}=\frac{h_c}{6}\)

\(\Rightarrow4a=5b=6c\)

\(\Rightarrow\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60\)

\(\left\{\begin{matrix}\frac{a}{\frac{1}{4}}=60\\\frac{b}{\frac{1}{5}}=60\\\frac{c}{\frac{1}{6}}=60\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=15\\b=12\\c=10\end{matrix}\right.\)

Vậy độ dài 3 cạnh của t/g lần lượt là 15, 12, 10

Bình luận (0)
LH
12 tháng 2 2017 lúc 10:14

gọi 3 đường cao ha ; hb;hc lần lượt là a, b, c

Theo bài ra ta có:

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và a+b+c=37

Áp dụng t/c dãy tỉ số = nhau ta có

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{37}{15}\)

=>\(\frac{a}{4}=\frac{37}{15}=>a=\frac{37.4}{15}\)=>a=\(\frac{148}{15}\)

\(\frac{b}{5}=\frac{37}{15}=>b=\frac{37.5}{15}=>b=\frac{37}{3}\)

\(\frac{c}{6}=\frac{37}{15}=>c=\frac{37.6}{15}=>c=\frac{222}{15}\)

Vậy độ dài 3 đường cao của tam giác ABC là \(\frac{148}{15}cm;\frac{37}{3}cm;\frac{222}{15}cm\)

Bình luận (0)

Các câu hỏi tương tự
KP
Xem chi tiết
DH
Xem chi tiết
LK
Xem chi tiết
DL
Xem chi tiết
YT
Xem chi tiết
HK
Xem chi tiết
NS
Xem chi tiết
37
Xem chi tiết
WG
Xem chi tiết