Ôn thi vào 10

NN

Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R), ba đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm đối xứng với H qua BC.

a)Chứng minh: Tứ giác ACKB nội tiếp.

b)Kẻ đường kính AA' của (O). C/m AA'\(\perp\)EF.

c)Gọi I là trung điểm BC. C/m ba điểm H, I, A' thẳng hàng.

d)Gọi G là trọng tâm tâm tam giác ABC. C/m \(S_{AHG}=2S_{AOG}\)

TH
31 tháng 5 2021 lúc 15:55

a) Dễ thấy A, H, K thẳng hàng.

Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).

Suy ra tứ giác ACKB nội tiếp.

b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)

\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)

c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.

d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm) 

Bình luận (1)

Các câu hỏi tương tự
TQ
Xem chi tiết
HW
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
X9
Xem chi tiết
HH
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết