Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

LG

Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M
vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.
Chứng minh rằng :
a) Tam giác AFE cân
b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE
c) Chứng minh rằng : AE = AB + AC chia 2

LT
13 tháng 4 2020 lúc 16:20

a) Xét ΔΔ AFH vuông tại H và ΔΔ AED vuông tại H có :

^FAH=^EAH (AD là tia phân giác FAEˆ )

chung AH

=> Δ AFH = Δ AED (cgv - gn)

=> AF = AE (cặp cạnh tương ứng)

=> Δ AFE cân

b) Vì Δ AFE cân

=>^ AFE=AEF

Vì EF // BK

=> ^AFE=^K (đồng vị)

và ^AEF=^ABK(đồng vị)

Mà ^AFE=^AEF

=> ^K=^ABK

=> Δ ABK cân tại A

=> AK = AB

Ta có :

AK = AF + KF

AB = AE + EB

Mà AK = AB và AF = AE

=> FK = EB

c) Từ M kẻ MI // AK

Nối FI

Vì FM // KI

=> ^MFI=^FIK (so le trong)

Vì FD // MI

=> ^KFI=^FIM (so le trong)

Xét Δ FKI và Δ IFM có :

^KFI=^FIM(chứng minh trên)

chung FI

^KIF=^MFI(so le trong)

=> Δ FKI = Δ IFM (g-c-g)

=> FK = MI (cặp cạnh tương ứng)

Vì FE // BK

=> ^IBM=^BME (so le trong)

mà ^BME=^CMF (đối đỉnh)

=> ^CMF=^IBM

Vì MI // CF

=> ^MCF=^IMB(đồng vị)

Xét Δ FCM và Δ IMB có :

^MCF=^IMB(chứng minh trên)

CM = MB (M là trung điểm của BC)

^CMF=^IBM (chứng minh trên)

=> Δ FCM = Δ IMB (g-c-g)

=> CF = MI (cặp cạnh tương ứng)

mà MI = FK (chứng minh trên)

=> CF = FK

Mà FK = EB (theo câu b)

=> CF = EB

Theo câu a :

FA = EA

=> AE+FA:2 = AE

=> AE = AE+AC+FC:2

Mà CF = EB

=> AE+EB+AC:2

=> AE = AB+AC:2

đpcm

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
NE
Xem chi tiết
LT
Xem chi tiết
RK
Xem chi tiết
PA
Xem chi tiết
TN
Xem chi tiết
LC
Xem chi tiết
TN
Xem chi tiết
QK
Xem chi tiết