§3. Các hệ thức lượng giác trong tam giác và giải tam giác

PT

Cho tam giác ABC Có AB+AC=13 ,r=\(\sqrt{3}\) góc A = 60độ tính BC

KB
30 tháng 3 2022 lúc 16:35

Đặt AB = c ; AC = b ; BC = a . 

Ta có : \(b+c=13\)  ; \(r=\dfrac{S}{p}=\sqrt{3}\)  ( p \(=\dfrac{a+b+c}{2}\) ) 

Có : \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) nên : \(r=\sqrt{\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=\sqrt{3}\) 

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)=3p\)   

\(\Leftrightarrow\left(\dfrac{-a+b+c}{2}\right)\left(\dfrac{-b+a+c}{2}\right)\left(\dfrac{-c+a+b}{2}\right)=\dfrac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow\left(-a+b+c\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(a+b+c\right)\)

\(\Leftrightarrow\left(-a+13\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(13+a\right)\)

\(\Leftrightarrow\left(-a+13\right)\left[a^2-\left(b-c\right)^2\right]=12\left(13+a\right)\)   (2)

Có : \(\dfrac{b^2+c^2-a^2}{2bc}=cosA=cos60^o=\dfrac{1}{2}\)  \(\Rightarrow b^2+c^2-a^2=bc\) \(\Leftrightarrow a^2=b^2+c^2-bc\)  (1) 

Mặt khác :  \(b+c=13\Leftrightarrow b^2+c^2-bc+3bc=169\Leftrightarrow a^2=169-3bc\)

Từ (1) ; (2) suy ra : \(\left(-a+13\right)bc=12\left(13+a\right)\)

\(\Leftrightarrow\left(-a+13\right)\left(169-a^2\right)=36\left(13+a\right)\)

\(\Leftrightarrow\left(13-a\right)^2\left(13+a\right)=36\left(13+a\right)\) 

\(\Leftrightarrow\left(13-a\right)^2=36\) \(\Leftrightarrow\left[{}\begin{matrix}13-a=6\\13-a=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=7\\a=19>13=b+c\left(L\right)\end{matrix}\right.\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NC
Xem chi tiết
FA
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
NC
Xem chi tiết
HC
Xem chi tiết
PL
Xem chi tiết
FA
Xem chi tiết