Hình học lớp 7

NT

Cho tam giác ABC có AB=AC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD=AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng tam giác KBD= tam giác KCE

SG
26 tháng 11 2016 lúc 16:50

Ta có hình vẽ:

A B C K D E

Xét Δ ABE và Δ ACD có:

AB = AC (gt)

A là góc chung

AE = AD (gt)

Do đó, Δ ABE = Δ ACD (c.g.c)

=> ABE = ACD (2 góc tương ứng)

và AEB = ADC (2 góc tương ứng)

Mà AEB + BEC = 180o (kề bù)

ADC + CDB = 180o (kề bù)

nên BEC = CDB

Có: AB = AC (gt)

AD = AE (gt)

=> AB - AD = AC - AE

=> BD = CE

Xét Δ KBD và Δ KCE có:

KBD = KCE (cmt)

BD = CE (cmt)

KDB = KEC (cmt)

Do đó, Δ KBD = Δ KCE (đpcm)

Bình luận (0)
TH
26 tháng 11 2016 lúc 17:00

Ta có hình vẽ:

A B C D E K Xét tam giác ABE và tam giác ACD có:

A: góc chung

AB = AC (GT)

AD = AE (GT)

=> tam giác ABE = tam giác ACD (c.g.c)

=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)

=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)

\(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)

\(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)

Ta có: AB = AC; AD = AE => DB=EC (3)

Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)

Bình luận (0)

Các câu hỏi tương tự
BC
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
NB
Xem chi tiết
CG
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết