Chương II : Tam giác

NH

Cho tam giác ABC có AB=AC. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho: MA=MD.

1) Chứng minh tam giác AMB= tam giác AMC

2) Chứng minh AB=CD

3) Chứng minh AC//BD

4) Trên nửa mặt phẳng bờ là đường thẳng AC không chứa điểm B, vẽ Ax song song với BC; trên tia Ax lấy điểm E sao cho AE=BC. Chứng minh C là trung điểm của đoạn thẳng DE

5) Gọi I là trung điểm của AC. Chứng minh B;I;E thẳng hàng

VT
19 tháng 12 2019 lúc 9:53

a) Xét 2 \(\Delta\) \(AMB\)\(AMC\) có:

\(AB=AC\left(gt\right)\)

\(MB=MC\) (vì M là trung điểm của \(BC\))

Cạnh AM chung

=> \(\Delta AMB=\Delta AMC\left(c-c-c\right).\)

b) Xét 2 \(\Delta\) \(ABM\)\(DCM\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(BM=CM\) (vì M là trung điểm của \(BC\))

=> \(\Delta ABM=\Delta DCM\left(c-g-c\right)\)

=> \(AB=CD\) (2 cạnh tương ứng).

c) Xét 2 \(\Delta\) \(ACM\)\(DBM\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\) (vì 2 góc đối đỉnh)

\(CM=BM\) (như ở trên)

=> \(\Delta ACM=\Delta DBM\left(c-g-c\right)\)

=> \(\widehat{ACM}=\widehat{DBM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
QT
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
MC
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
RB
Xem chi tiết