Chương II : Tam giác

LN

Cho Tam giác ABC có AB=AC, AM là tia phân giác của góc BAC

a)Chứng minh BM=MC

b)chứng minh AM vuông góc với BC

( Giup mình với nha)

HP
13 tháng 12 2021 lúc 19:06

a. Ta có: AB = AC

\(\Rightarrow\Delta ABC\) cân tại A.

Mà tia phân giác của góc cân đồng thời cắt cạnh đối tại trung điểm của nó.

Vậy: BM = MC.

b. Xét 2\(\Delta\)\(\Delta ABM\) và \(\Delta ACM\) có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\\widehat{BAM}=\widehat{CAM}\left(gt\right)\\AM.chung\end{matrix}\right.\)

\(\Rightarrow\) \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

Vậy \(\widehat{AMB}=\widehat{AMC}\)

Mà: \(\widehat{BMC}=180^o\)

Vậy: \(\widehat{AMB}=90^o\) hay \(AM\perp BC\)

Bình luận (0)
DL
13 tháng 12 2021 lúc 19:09

a) Xét tam giác ABM và tam giác ACM, ta có:

AB = AC (gt)

AM: cạnh chung

Góc BAM = góc CAM (do AM là tia phân giác của góc BAC)

=> tam giác ABM = tam giác ACM (c.g.c)

=> BM = MC (2 cạnh tương ứng) (đpcm)

b) Xét tam giác ABC, ta có:

AB = AC (gt)

=> tam giác ABC cân tại A

Mà AM là tia phân giác góc BAC

=> AM cũng là đường cao ứng với BC

=> AM vuông góc BC (đpcm)

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
CP
Xem chi tiết
BT
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
BH
Xem chi tiết