Ôn tập toán 7

CT

Cho tam giác ABC . Có AB = AC . Lấy điểm D trên cạnh AB . Lấy điểm E trên cạnh AC sao cho AD = AE 

a) Chứng minh BE = CD 

b) Gọi O là giao điểm của BE và CD . Chứng minh rằng tam giác BOD  bằng tam giác COE

HN
19 tháng 8 2016 lúc 19:48

A B C D E O

a/ Xét tam giác ABE và tam giác ACD có :

AD = AE , góc A là góc chung của hai tam giác , AB = AC

=> tam giác ABE = tam giác ACD => CD = BE

b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)

=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)

Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)

Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)

Bình luận (0)
H24
19 tháng 8 2016 lúc 19:34

a) Xét tam giác ADE và ADC

AE = AC 

góc a chung 

AE = AD ( theo gt) 

Tam giác ABE= ADC 

nên BE = CD ( đpcm)

tick 

nhabn

Bình luận (0)
TQ
19 tháng 8 2016 lúc 20:04

mk vẽ hình bài trên rồi nhé

a) Xét tam giác ABE và tam giác ACD:

có+AB=AC(gt)

     +A: góc chung

     +AD=AE(gt)

Vậy tam giác ABE=tam giác ACD(c.g.c)

=> BE=CD( 2 cạnh tương ứng )

b) 

Vì tam giác ABE=tam giác ACD(cmt)

nên: ABD=ACE( 2 góc tương ứng )

Xét tam giác BOD và tam giác COE:

có:+ góc BOD=COE( đối đỉnh)

      +AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE

       +góc ABE=ACD(cmt)

Vậy tam giác BOD=COE(g.c.g)

hihi ^...^ vui^_^

 

 

 

Bình luận (2)

Các câu hỏi tương tự
CT
Xem chi tiết
CT
Xem chi tiết
NK
Xem chi tiết
NL
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
SV
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết