Chương II : Tam giác

L2

Cho tam giác ABC có AB =AC . Gọi 

M là trưng điểm của BC 

a) chứng minh tam giác ABM = tam giác ACM

b) trên cạnh AM lấy điểm K bất kì . Chứng minh KB =KC

c) Tia BK cắt cạnh AC tại F , tia CK cắt cạnh AB tại E . Chứng minh EF// CB

AH
31 tháng 12 2020 lúc 14:53

Lời giải:

a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (giả thiết)

$AM$ chung

$BM=CM$ (cmt)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) 

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$

Xét tam giác $BAK$ và $CAK$ có:

$BA=CA$ (gt)

$AK$ chung

$\widehat{BAK}=\widehat{CAK}$ (cmt)

$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)

$\Rightarrow KB=KC$ 

c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$

hay $\widehat{EBK}=\widehat{FCK}$

Xét tam giác $EBK$ và $FCK$ có:

$\widehat{EBK}=\widehat{FCK}$ (cmt)

$BK=CK$ (cmt)

$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)

$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)

$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$

$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$

$KB=KC$ nên tam giác $KBC$ cân tại $K$

$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$

Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$ 

Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)

 

Bình luận (0)
AH
31 tháng 12 2020 lúc 14:56

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
I7
Xem chi tiết
MT
Xem chi tiết
TV
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
AM
Xem chi tiết