Violympic toán 8

NN

Cho tam giác ABC có 3 đường cao AD, BE,CF giao nhau tại H. Chứng minh rằng:

a) ΔAEB∼ΔAFC

b)ΔABC∼ΔAEF

c) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)(Cần mỗi ý c nha)

AH
8 tháng 3 2018 lúc 0:26

Lời giải:

câu c)

Ta có: \(\frac{HD}{AD}=\frac{HD.BC}{AD.BC}=\frac{2S_{BHC}}{2S_{ABC}}=\frac{S_{HBC}}{S_{ABC}}\)

\(\frac{HE}{BE}=\frac{HE.AC}{BE.AC}=\frac{2S_{AHC}}{2S_{ABC}}=\frac{S_{AHC}}{S_{ABC}}\)

\(\frac{HF}{CF}=\frac{HF.AB}{CF.AB}=\frac{2S_{AHB}}{2S_{ABC}}=\frac{S_{AHB}}{S_{ABC}}\)

Cộng theo vế các đẳng thức vừa thu được:

\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
EC
Xem chi tiết
LA
Xem chi tiết
CT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết