a) \(\Delta ABC\) cân tại A có AH là đường cao đồng thời là đường trung tuyến của tam giác
=> HB = HC = \(\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Delta ABH\) vuông tại H, theo định lí Py-ta-go
Ta có: AB2 = AH2 + HB2
=> AH2 = AB2 - HB2
AH2 = 52 - 32
AH2 = 16
=> AH = \(\sqrt{16}=4\left(cm\right)\)
b) Hai đường trung tuyến BE và CF cắt nhau tại G
=> G là trọng tâm của \(\Delta ABC\)
Mà đường trung tuyến AH đi qua trọng tâm G của \(\Delta ABC\)
Do đó: A, G, H thẳng hàng (đpcm)
c) \(\Delta ABC\) có AH là đường cao đồng thời là đường phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét hai tam giác ABG và ACG có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A_1}=\widehat{A_2}\) (cmt)
AG: cạnh chung
Vậy: \(\Delta ABG=\Delta ACG\left(c-g-c\right)\)
Suy ra: \(\widehat{ABG}=\widehat{ACG}\) (hai góc tương ứng).