Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
cho tam giác ABC vuông tại a có ah vuông góc với BC, trên cạnh AB, AC lấy 2 điểm E, D sao cho góc DHE=90 độ. Tìm vị trí của điểm D, E sao cho độ dài DE nhỏ nhất
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG