a: Xét ΔADB và ΔAEC có
AD=AE
góc BAD chung
AB=AC
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a: Xét ΔADB và ΔAEC có
AD=AE
góc BAD chung
AB=AC
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
cho tam giác ABC cân tại A.lấy D thuộc AC,E thuộc AB sao cho AD=AE
a,chứng minh DB=EC
b, gọi O là giao điểm của BD và EC.chứng minh : tam giác OBC có OB=OC
c,chứng minh: DE//BC
Cho tam giác ABC cân tại A. Lấy H thuộc cạnh AC, K thuộc cạnh AB sao cho AH = AK. Chứng minh rằng: a) ABH = ACK . b) Nối K với H, Chứng minh KH // BC. c) Gọi O là giao điểm của BH và CK. Chứng minh tam giác BOC cân.
Cho tam giác ABC cân tại A. Lấy H thuộc cạnh AC, K thuộc cạnh AB sao cho AH = AK. Chứng minh rằng: a) ABH ACK . b) Nối K với H, Chứng minh KH // BC. c) Gọi O là giao điểm của BH và CK. Chứng minh BOC cân.
Cho \(\Delta\)ABC cân tại A. Lấy điểm D thuộc AC, E thuộc AB sao cho AD=AE
1. CM: DB = EC
2. Gọi O là giao điểm của BD và EC. CM: \(\Delta\)OBC=\(\Delta ODE\) là \(\Delta\) cân
3. CMR: DE//BC
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD. a) Chứng minh ΔAHB = ΔDBH. b) Chứng minh AB//HD. c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH. d) Tính góc ACB , biết góc BDH= 350 . Bài 6 : Cho tam giác ABC cân tại A và có . 1. Tính và 2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC. Gia sư Thành Được www.daythem.edu.vn Bài 7 : Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE. 1. Chứng minh : DB = EC. 2. Gọi O là giao điểm của BD và EC. Chứng minh : OBC và ODE là cân. 3. Chứng minh rằng : DE // BC. Bài 8 : Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB. 1. Chứng minh : CD // EB. 2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF. Bài 9 : Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh : 1. Tam giác ACE đều. 2. A, E, F thẳng hàng. Bài 10 : Cho tam giác ABC vuông góc tại A có góc B = 75º; BC = 10 cm . a) Tính góc C. b) Trên cạnh BA kéo dài về phía A đoạn AD = AB, Tính diện tích ABD (Gợi ý: Hạ đường cao sẽ có vuông với góc nhọn = 30º )
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Viết Giả thiết - Kết luận cho các bài toán này dùm mik đi
Bài 1. Cho tam giác ABC cân tại A, có A=100⁰.Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng:
a) MN//BC
b) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh: BH = CK
c)△ABH =△ACK
Bài 2:Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H BC).
a) Chứng minh: HB = HC.
b) Kẻ HD丄AB (D ∈ AB), HE丄AC (E∈ AC). Chứng minh tam giác ADE cân.
c) Chứng minh DE // BC
Bài 3 .Cho ΔABC vuông tại A . Tia phân giác của góc C cắt AB tại I. Kẻ IM vuông góc với BC tại M, hai đường thẳng CA và MI cắt nhau tại N.
a. Chứng minh:ΔACI =ΔMCI.
b. Chứng minh: NIB là tam giác cân.
Bài 4. Cho tam giác ABC cân tại A. Kẻ AH⏊BC , H∈BC
a) Chứng minh △ABH = △ ACH
b) Kẻ HM丄AB, M∈AB ; HN丄AC, N∈AC . Chứng minh MB = NC
c) Gọi O là giao điểm AH và MN. Chứng minh MN//BC
Bài 5 Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn.
Chứng minh rằng : a, MQO = NPO ; b, MQ ∥ NP
Bài 6 Cho tam giác ABC vuông tại A có AB = AC. Gọi K là trung điểm của BC
a. Chứng minh AKB = AKC
b. Chứng minh AK vuông góc BC
Bài 7 Cho tam giác ABC cân tại A và có góc A=50⁰
1. Tính góc B và góc C
2. Lấy D ∈ AB, E ∈ AC sao cho AD = AE. Chứng minh ΔADE cân
3. Chứng minh DE // BC.
Bài 8 :Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
1. Chứng minh : DB = EC.
2. Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC là tam giác cân.
CHO TAM GIÁC ABC VUÔNG TẠI B VÀ AC = 2AB . KẺ TIA PHÂN GIÁC AE (E THUỘC BC). GỌI D LÀ TRUNG ĐIỂM CỦA AC. a) CHỨNG MINH TAM GIÁC AEB = TAM GIÁC AED b) CHỨNG MINH EA=EC c) CHỨNG MINH TAM GIÁC ABD ĐỀU (M.N ƠI GIÚP MIK VỚI, MINK ĐANG GẤP)