a) +Xét △ABC có:
△ABC cân tại A. (gt)
AH là đường cao. (gt)
⇒ AH là đường trung tuyến.
⇒ H là trung điểm BC.
+Xét △BDC có:
N là trung điểm BD. (gt)
H là trung điểm BC. (cmt)
⇒ HN là đường trung bình của △BDC.
⇒ HN // DC; HN = 1/2.DC
b) +Xét △AHN có:
M là trung điểm AH. (gt)
DM // NH (NH // DC; M ∈ DC)
D ∈ AN
⇒ D là trung điểm AN.
⇒AD=DN.
Mà DN=NB (N trung điểm BD)
⇒ AD= 1/3. AB ( AD+DN+NB=AB )
a) +Xét △ABC có:
△ABC cân tại A. (gt)
AH là đường cao. (gt)
⇒ AH là đường trung tuyến.
⇒ H là trung điểm BC.
+Xét △BDC có:
N là trung điểm BD. (gt)
H là trung điểm BC. (cmt)
⇒ HN là đường trung bình của △BDC.
⇒ HN // DC; HN = 1/2.DC
b) +Xét △AHN có:
M là trung điểm AH. (gt)
DM // NH (NH // DC; M ∈ DC)
D ∈ AN
⇒ D là trung điểm AN.
⇒AD=DN.
Mà DN=NB (N trung điểm BD)
⇒ AD= 1/3. AB ( AD+DN+NB=AB )