a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
=>ΔADE cân tại A
b: Xét ΔDBC và ΔECB có
DB=EC
góc DBC=gócc ECB
BC chung
Do đó: ΔDBC=ΔECB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
=>ΔADE cân tại A
b: Xét ΔDBC và ΔECB có
DB=EC
góc DBC=gócc ECB
BC chung
Do đó: ΔDBC=ΔECB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho tam giác ABC cân tại A. CP,BQ là các tia phân giác trong của tam giác ABC
(P = AB,Q < AC). Gọi O là giao điểm của CP và BỘ.
a) Chứng minh tam giác OBC là tam giác cân.
b) Chứng minh đường thẳng AO vuông góc với BC.
c) Chứng minh CP = BQ .
d) Tam giác ABQ là tam giác gì? Vì sao?.
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
Cho tam giác ABC, M là một điểm nằm trong tam giác ABC. Gọi D là giao của AM và BC, E là giao của BM và CE, F là giao của CM và AB. Đường thẳng qua điểm M song song với BC cắt DE và DF lần lượt tại K và I. Chứng minh: MI = MK
cho tam giác ADC qua kẻ đường thẳng song song với CD cắt đường thẳng kẻ qua D và sông song với AC tại B gọi O là giao điểm của AD BC chứng minh AB=CD AC=BD
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2