Hình học lớp 7

SG

cho tam giác ABC cân tại A. các đường phân giác của góc B và góc C cắt cạnh đối diện tại O và E.

a) cm : tam giác BEC = tam giác CDB

b) cm : tam giác EAD cân tại A

c) cm : tam giác BED, tam giác EDC cân

d) cm : BE = ED = DC

đang gấp làm nhanh nhanh giùm vssssssssssssssssss

TT
10 tháng 2 2017 lúc 17:57

A B C E 1 1 2 2 D

a, Vì tam giác ABC cân tại A

=> AB = AC và \(\widehat{B}=\widehat{C}\)

\(\widehat{B}=\widehat{C}\) mà BD là phân giác của EBC, CE là phân giác của BCD

=> \(\widehat{B1}=\widehat{B2}=\widehat{C1}=\widehat{C2}\)

Xét tam giác BEC và t/g CDB có

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BC: Cạnh chung

\(\widehat{B2}=\widehat{C2}\left(cmt\right)\)

Do đó: \(\Delta BEC=\Delta CDB\left(g-c-g\right)\)

b, Vì t/g BEC = t/g CDB

=> BE = CD ( 2 cạnh tương ứng )

Vì BE + AE = AB

AD + DC = AC

Mà AB = AC; BE = CD (cmt)

=> AE = AD

Vậy t/g EAD cân tại A

Bình luận (2)
TT
10 tháng 2 2017 lúc 19:50

Câu c hơi mắc nhưng đáp ứng nhu cầu của bạn thì mình làm câu d nhé.

c, Kết luận: tam giác BED cân tại E và t/g EDC cân tại D

d,

Vì t/g BED cân tại E

=> EB = ED.

Vì BE = CD ( câu b )

và BE = DE

=> BE = CD = DE đpcm

Bình luận (0)

Các câu hỏi tương tự
SG
Xem chi tiết
NP
Xem chi tiết
SG
Xem chi tiết
MS
Xem chi tiết
CN
Xem chi tiết
CN
Xem chi tiết
NP
Xem chi tiết
MP
Xem chi tiết
CN
Xem chi tiết