Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm D sao cho BD=BA
a) CM: tam giác ABM = tam giác DBM suy ra góc MDB vuông
b) So sánh AC và BC. CM: MC>MA
Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ^ BC (E Î BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh DADF = DEDC rồi suy ra DF > DE
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD
1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB