Cho tam giác ABC các góc đều nhọn. Các đường cao AA', BB', CC' cắt nhau tại H. Gọi S1, S2, S3 lần lượt là diện tích các tam giác AB'C', BC'A', CA'B'. CM: S1/AH^2=S2/BH^2=S3/CH^2
Cho tam giác ABC các góc đều nhọn. Các đường cao AA', BB', CC' cắt nhau tại H. Gọi S1, S2, S3 lần lượt là diện tích các tam giác AB'C', BC'A', CA'B'. CM: \(\dfrac{S_1}{AH^2}=\dfrac{S_2}{BH^2}=\dfrac{S_3}{CH^2}\)
Cho tam giác ABC có 3 góc nhọn. 3 đường cao AA', BB', CC' cắt nhau tại H; A1, B1, C1 là các điểm đối xứng của H qua BC, AC,AB. CM: \(\dfrac{AA_1}{AA'}+\dfrac{BB_1}{BB'}+\dfrac{CC_1}{CC'}\) không đổi
Cho tam giác ABC nhọn. Các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA'+HB'/BB'+HC'/CC'.
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. CMR: AN.BI.CM=BN.IC.AM.
c) CMR: (AB+BC+CA)^2/AA'^2+BB'^2+CC'^2 lớn hơn hoặc bằng 4
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho hình thang ABCD ( đáy lớn CD ). Gọi O là giao điểm của AC và BD, các đường kẻ từ A và B lần lượt song song với BC và AD cắt các dường chéo BD và Ac tương ứng ở F và E. Chứng minh:
a. EF//AB
b. AB2=EF.CD
c. Gọi S1,S2,S3vàS4 theo tự là diện tích của các tam giác OAB, OCD, OAD và OBC. Chứng minh S1.S2=S3.S4
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN