Bài 3. (3,0 điểm) Cho tam giác ABC có ba góc nhọn. Các điểm M, N, P lần lượt là trung điểm của cạnh BC, AB, AC. Gọi O là giao điểm các đường trung trực của tam giác ABC. Trên tia đối của tia MO lấy điểm D sao cho MO = MD. Trên tia đối của tia NO lấy điểm F sao cho NO = NF. Trên tia đối của tia PO lấy điểm E sao cho PO = PF.
a) Chứng minh ∆ANO = ∆BNF, từ đó suy ra AO = BF và AO // BF.
b) Chứng minh hình lục giác AFBDCE có 6 cạnh bằng nhau và 2 trong 6 cạnh đó đôi một song song.
Cho tam giác ABC vuông tại A có ab=8cm ac=6cm a)Tính BC b)Trên cạnh AC lấy điểm E sao cho trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chúng minh tam giác BEC=tam giac DEC c)Chứng minh tam giác BCD là tam giác cân và xác định trọng tâm của tam giác BCD
cảm ơn mn giải giúp mik :333
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM
Bài 1:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Tính số đo của góc ABD
b) Chứng minh: tam giác ABC= tam giác BAD
c) So sánh độ dài AM và BC
Bài 2: Cho tam giác ABC có BM và CN là hai đường trung tuyến cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME = MG. Trên tia đối của tia NC lấy điểm F sao cho NF = NG.
a) Chứng minh: EF = BC
b) Chứng minh: tam giác FAE= tam giác BGC
Bài 3: Cho tam giác ABC cân tại A, có AB = AC = 10cm; BC = 8cm. Gọi G là trọng tâm của tam giác ABC. Tính AG, BG, CG.
Cho tam giác ABC vuông tại A và góc ABC = 60 độ.
a) So sánh AB và AC.
b) Trên BC lấy D sao cho BD=AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối của tia AB tại E.
C/m tam giác ABC = tam giác DBE.
c) Gọi H là giao điểm của ED và ÁC. C/m tia BH là tia phân giác của góc ABC.
d) Qua B dựng đường thẳng vuông góc với AB cắt đường thẳng ED tại K.
C/m tam giác HBK đều.
mọi người vẽ giúp mình hình với
Cho tam giác ABC cân tại A có trung tuyến AM qua B kẻ đường thẳng song song với AC cắt đường thẳng AB tại D
a chứng minh tam giác ABC bằng tam giác DMB
b Chứng minh AB = BD
C Gọi I là trung điểm của AB đoạn thẳng PD cắt đường thẳng bc tại O Trên tia đối của tia PO lấy điểm N sao cho BN = PO .Chứng minh O là trọng tamm của tam giác ABB và NA=20M