Violympic toán 8

NH

cho số thực x,y,z thoả mãn 3(x2+y2+z2)=(x+y+z)2 và x2018+y2018+z2018=27100

Tính giá trị của A= \(\left(\frac{x+2y-4z}{3}\right)^{2018}\) +2019

KB
14 tháng 3 2019 lúc 11:10

Phân tích GT đầu , ta có : x = y = z

Rồi làm như thường

Bình luận (0)
ND
14 tháng 3 2019 lúc 11:11

mình sửa đề nhé~

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)

\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)

\(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)

Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)

\(\Leftrightarrow3.x^{2018}=27^{673}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

đến đây bạn tự làm nốt nhé

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
BT
Xem chi tiết
NS
Xem chi tiết
PM
Xem chi tiết