Cho A=\(\dfrac{1}{2!}\)+\(\dfrac{2}{3!}\)+\(\dfrac{3}{4!}\)+....+\(\dfrac{2014}{2015!}\) so sánh A với 1 biết n!=1.2.3....n
BT1: Tính
2) B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{29.30.31}\)
E =\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
Cho \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{18.19.20}\) Chứng minh \(A< \dfrac{1}{4}\)
Help me!!!!!!!
Chứng tỏ rằng :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{299}+\dfrac{1}{300}>\dfrac{2}{3}\)
Tính tích \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{899}{900}\)
Chứng tỏ rằng : \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
Tính giá trị của biểu thức sau :
\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
Bài 7 cho S =\(\dfrac{1}{3}+\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{61}+\dfrac{1}{72}+\dfrac{1}{91}+\dfrac{1}{94}\)
So sánh S với \(\dfrac{3}{5}\)
cho A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)
So sánh A với\(\dfrac{1}{4}\)
Tìm số tự nhiên x biết :
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
b) Cho S = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng \(\dfrac{2}{5}< S< \dfrac{8}{9}\)