Lời giải:
\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2012}{5^{2012}}\)
\(\Rightarrow 5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2012}{5^{2011}}\)
Trừ theo vế:
\(4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2011}}-\frac{2012}{5^{2012}}\)
\(20S=5+1+\frac{1}{5}+...+\frac{1}{5^{2010}}-\frac{2012}{5^{2011}}\)
Trừ theo vế:
\(16S=5-\frac{2012}{5^{2011}}-\frac{1}{5^{2011}}+\frac{2012}{5^{2012}}\)
\(16S=5-\frac{2013}{5^{2011}}+\frac{2012}{5^{2012}}< 5-\frac{2013}{5^{2011}}+\frac{2013}{5^{2011}}=5\)
\(S< \frac{5}{16}< \frac{1}{3}\)