\(P=Q\) thì \(x=y=z\) lật lại là \(x=y=z\) thì \(P=Q\) ta thay vào xem nó đúng thật ko nhé :v
Với \(x=y=z\) thì \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(=\left(x+x\right)^2+\left(x+x\right)^2+\left(x+x\right)^2\)
\(=\left(2x\right)^2+\left(2x\right)^2+\left(2x\right)^2=4x^2+4x^2+4x^2=12x^2\)
Với \(x=y=z\) thì \(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(x+z\right)+\left(x+z\right)\left(x+y\right)\)
\(=\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)\)
\(=2x\cdot2x+2x\cdot2x+2x\cdot2x\)
\(=4x^2+4x^2+4x^2=12x^2\)
Rõ rằng là bằng nhau rồi tức là điều trên cũng đúng hay ta có ĐPCM