Ôn thi vào 10

MY

cho pt: \(ax^2+by+c=0\)

và pt: \(cx^2+by+a=0\) (a\(\ne\)c)

2 pt trên có 1 nghiệm chung duy nhất

gọi x1,x2 lần lượt là 2 nghiệm còn lại của 2 pt trên

chứng minh \(\left|x1\right|+\left|x2\right|>2\)

giúp :))))

TK
17 tháng 5 2021 lúc 12:30

\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)

vì pt có 1 nghiệm duy nhất

nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)\(\dfrac{a}{c}\ne1\)\(a\ne c\)

 

 

 

Bình luận (4)
LH
17 tháng 5 2021 lúc 12:47

Mình nghĩ là sai đề
Cho pt \(ax^2+bx+c=0\) (1) và \(cx^2+bx+a=0\)  (2)

Lấy (1) trừ (2) ta được: \(\left(x^2-1\right)\left(a-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(vì a khác c)

TH1: Giả sử nghiệm chung của hai pt là x=1

Thay x=1 vào (1) và (2) được: \(\left\{{}\begin{matrix}a+b+c=0\\a+b+c=0\end{matrix}\right.\)\(\Leftrightarrow b=-a-c\)

Áp dụng hệ thức viet vào hai pt:
\(\left\{{}\begin{matrix}x_1+1=-\dfrac{b}{a}\\x_2+1=-\dfrac{b}{c}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{b}{a}-1\\x_2=-\dfrac{b}{c}-1\end{matrix}\right.\)

Có: \(\left|x_1\right|+\left|x_2\right|>2\Leftrightarrow\left|-\dfrac{b}{a}-1\right|+\left|\dfrac{-b}{c}-1\right|>2\)

\(\Leftrightarrow\left|-\dfrac{-a-c}{a}-1\right|+\left|\dfrac{-\left(-a-c\right)}{c}-1\right|>2\)

\(\Leftrightarrow\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|>2\) \(\Leftrightarrow c^2+a^2>2\left|ac\right|\) (luôn đúng với mọi \(a\ne c\))
TH2: Giả sử x=-1 là nghiệm chung của hai pt

Thay x=-1 vào hai pt được: \(\left\{{}\begin{matrix}a-b+c=0\\c-b+a=0\end{matrix}\right.\) \(\Leftrightarrow b=a+c\)

Áp dụng viet vào hai pt có: \(\left\{{}\begin{matrix}x_1+\left(-1\right)=-\dfrac{b}{a}\\x_2+\left(-1\right)=-\dfrac{b}{c}\end{matrix}\right.\)

Khi đó: \(\left|x_1\right|+\left|x_2\right|=\left|-\dfrac{b}{a}+1\right|+\left|-\dfrac{b}{c}+1\right|\)

\(=\left|-\dfrac{a+c}{a}+1\right|+\left|-\dfrac{a+c}{c}+1\right|\)\(=\left|-\dfrac{c}{a}\right|+\left|-\dfrac{a}{c}\right|\)\(=\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|=\dfrac{c^2+a^2}{\left|ac\right|}>\dfrac{2\left|ac\right|}{\left|ac\right|}=2\)
Vậy...
 

 

Bình luận (1)

Các câu hỏi tương tự
AL
Xem chi tiết
KC
Xem chi tiết
KC
Xem chi tiết
CS
Xem chi tiết
H24
Xem chi tiết
SH
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết