\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)
vì pt có 1 nghiệm duy nhất
nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)⇔\(\dfrac{a}{c}\ne1\)⇔\(a\ne c\)
Mình nghĩ là sai đề
Cho pt \(ax^2+bx+c=0\) (1) và \(cx^2+bx+a=0\) (2)
Lấy (1) trừ (2) ta được: \(\left(x^2-1\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(vì a khác c)
TH1: Giả sử nghiệm chung của hai pt là x=1
Thay x=1 vào (1) và (2) được: \(\left\{{}\begin{matrix}a+b+c=0\\a+b+c=0\end{matrix}\right.\)\(\Leftrightarrow b=-a-c\)
Áp dụng hệ thức viet vào hai pt:
\(\left\{{}\begin{matrix}x_1+1=-\dfrac{b}{a}\\x_2+1=-\dfrac{b}{c}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{b}{a}-1\\x_2=-\dfrac{b}{c}-1\end{matrix}\right.\)
Có: \(\left|x_1\right|+\left|x_2\right|>2\Leftrightarrow\left|-\dfrac{b}{a}-1\right|+\left|\dfrac{-b}{c}-1\right|>2\)
\(\Leftrightarrow\left|-\dfrac{-a-c}{a}-1\right|+\left|\dfrac{-\left(-a-c\right)}{c}-1\right|>2\)
\(\Leftrightarrow\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|>2\) \(\Leftrightarrow c^2+a^2>2\left|ac\right|\) (luôn đúng với mọi \(a\ne c\))
TH2: Giả sử x=-1 là nghiệm chung của hai pt
Thay x=-1 vào hai pt được: \(\left\{{}\begin{matrix}a-b+c=0\\c-b+a=0\end{matrix}\right.\) \(\Leftrightarrow b=a+c\)
Áp dụng viet vào hai pt có: \(\left\{{}\begin{matrix}x_1+\left(-1\right)=-\dfrac{b}{a}\\x_2+\left(-1\right)=-\dfrac{b}{c}\end{matrix}\right.\)
Khi đó: \(\left|x_1\right|+\left|x_2\right|=\left|-\dfrac{b}{a}+1\right|+\left|-\dfrac{b}{c}+1\right|\)
\(=\left|-\dfrac{a+c}{a}+1\right|+\left|-\dfrac{a+c}{c}+1\right|\)\(=\left|-\dfrac{c}{a}\right|+\left|-\dfrac{a}{c}\right|\)\(=\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|=\dfrac{c^2+a^2}{\left|ac\right|}>\dfrac{2\left|ac\right|}{\left|ac\right|}=2\)
Vậy...