PT có 2 nghiệm khi:
\(\Delta=\left(m-1\right)^2-4\left(m-1\right)=\left(m-1\right)\left(m-5\right)\ge0\\ \Rightarrow\left[{}\begin{matrix}m< 1\\m>5\end{matrix}\right.\)
Theo Vi-ét: $\begin{cases} x_1+x_2=m-1\\ x_1x_2=m-1 \end{cases}$
Ta có $x_1+2x_2+x_1x_2=m$
\(\Leftrightarrow\left(x_1+ x_2\right)+x_1x_2+x_2=m\\ \Leftrightarrow m-1+x_2+m-1=m\\ \Leftrightarrow x_2=-m+2\)
Mà \(x_1+x_2=m-1\Leftrightarrow x_1=m-1+m-2=2m-3\)
Thay vào $x_1x_2=m-1$
\(\Leftrightarrow\left(2m-3\right)\left(-m+2\right)=m-1\\ \Leftrightarrow2m^2-6m+5=0\left(\text{vô nghiệm}\right)\)
Vậy không có giá trị của \(m\) thỏa mãn