\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\sqrt{x^2+1}=m\left(x^2+1\right)\)
\(\Leftrightarrow\left(\frac{x+1}{\sqrt{x^2+1}}\right)^2+2.\frac{x+1}{\sqrt{x^2+1}}=m\)
Đặt \(\frac{x+1}{\sqrt{x^2+1}}=t\Rightarrow-1< t\le1\)
\(\Rightarrow t^2+2t=m\)
Xét \(f\left(t\right)=t^2+2t\) trên \((-1;1]\Rightarrow f\left(-1\right)< f\left(t\right)\le f\left(1\right)\)
\(\Rightarrow-1< m\le3\)