Rút gọn P
a) \(P=\left(\dfrac{x+1}{x-1}+\dfrac{4x^2}{x^2-1}+\dfrac{x-1}{x+1}\right):\dfrac{x^2+x}{x^3-x}\)
\(P=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x^2+x}{x\left(x^2-1\right)}\)
\(P=\left(\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{4x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x^2-x}{x\left(x-1\right)\left(x+1\right)}\)
\(P=\left(\dfrac{x^2+2x+1+4x^2+x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x^2-x}{x\left(x-1\right)\left(x+1\right)}\)
\(P=\left(\dfrac{6x^2+2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x^2-x}{x\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{2\left(3x^2+1\right)}{\left(x-1\right)\left(x+1\right)}.\dfrac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}\)
\(P=\dfrac{2x\left(3x^2+1\right)}{x}=2\left(3x^2+1\right)\)