\(x^2=mx-m+5\Leftrightarrow x^2-mx+m-5=0\left(1\right)\)
\(\Delta>0\Leftrightarrow m^2-4\left(m-5\right)>0\Leftrightarrow m^2-4m+20>0\left(đúng\forall m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m\\x1x2=m-5\end{matrix}\right.\)
\(\dfrac{1}{x1}+\dfrac{1}{x2}=-\dfrac{3}{2}\left(x1;x2\ne0\right)\Rightarrow\dfrac{x1+x2}{x1x2}=-\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{m}{m-5}=-\dfrac{3}{2}\Leftrightarrow m=3\) \(m=3\Rightarrow x_{12}=\dfrac{3\pm\sqrt{17}}{2}\left(tm\right)\Rightarrow m=3\left(tm\right)\)