Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 6

DH

Cho P= (a-1)+|a-1|+(a-1)+|a-1|+.................+|a-1| gồm 100 số hạng. Tính P với a thuộc Z và 2.(a-1)≤0

TH
14 tháng 3 2019 lúc 19:15

+) Ta có: 2 . (a - 1) \(\le\) 0 \(\Rightarrow\) a - 1 \(\le\) 0 \(\Rightarrow\) |a - 1| = -(a - 1)

+) Ta có:

P = (a - 1) - (a - 1) + (a - 1) - (a - 1) + ... + (a - 1) - (a - 1)

P = 0 + 0 + ... + 0

P = 0

Bình luận (0)
H24
14 tháng 3 2019 lúc 19:18

\(2\left(a-1\right)\le0\Leftrightarrow\left(a-1\right)\le0\Leftrightarrow a\le1\Leftrightarrow\left|a-1\right|=-\left(a-1\right)=1-a\)

\(\Rightarrow P=\left(a-1\right)+\left|a-1\right|+\left(a-1\right)+\left|a-1\right|+.........++\left(a-1\right)+\left|a-1\right|\left(\text{100 số hạng}\right)=\left(a-1+1-a\right)+\left(a-1+1-a\right)+........+\left(a-1+1-a\right)\left(\text{50 số hạng}\right)=0+0+.....+0=0.\text{ Nên: P=0}\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
PY
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
HH
Xem chi tiết
AH
Xem chi tiết
LT
Xem chi tiết
ND
Xem chi tiết
TH
Xem chi tiết