Violympic toán 6

H24

Cho A =\(\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...\)

a,Tìm số hạng thứ n

b,So sánh tổng A có 2011 số hạng với \(\frac{2}{3}\)

AH
24 tháng 8 2020 lúc 17:44

Lời giải:

a) Số hạng thứ $n$: \(\frac{1}{n(2n-1)(2n+1)}\)

b) Tổng $A$ có 2011 số hạng có dạng là:

\(A=\frac{1}{1.1.3}+\frac{1}{2.3.5}+....+\frac{1}{2011.4021.4023}\)

\(A=\frac{2}{2.1.3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+....+\frac{2}{4022.4021.4023}\)

\(=\frac{2}{1.2.3}+\frac{2}{3.4.5}+\frac{2}{5.6.7}+...+\frac{2}{4021.4022.4023}\)

\(< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2011.2012.2013}\)

$A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2013-2011}{2011.2012.2013}$

$A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{2012.2013}$

$A< \frac{1}{2}-\frac{1}{2012.2013}< \frac{1}{2}< \frac{2}{3}$

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
PY
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
NS
Xem chi tiết
NN
Xem chi tiết
PH
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết