Ôn thi vào 10

VL

Cho (O; R) có ABCD là hình thang nội tiếp. Chứng minh rằng ABCD là Hình thang cân.

AH
22 tháng 4 2021 lúc 18:50

Lời giải:

Giả sử hình thang $ABCD$ có 2 đáy $AB,CD$

Vì $ABCD$ là hình thang nên: $\widehat{BAD}+\widehat{ADC}=180^0$ 

Vì $ABCD$ là tứ giác nội tiếp nên $\widehat{BAD}+\widehat{BCD}=180^0$

$\Rightarrow \widehat{ADC}=\widehat{BCD}$

Hình thang $ABCD$ có 2 góc ở đáy cùng kề cạnh $DC$ là  $\widehat{ADC}=\widehat{BCD}$ nên $ABCD$ là hình thang cân (đpcm)

Bình luận (0)