Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A có AB= 12cm; AC= 16cm; kẻ đường cao Ah.
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b) Tính BC, AH.
c)trong tam giác ABC kẻ phân giác AD (D thuộc BC) Vẽ phân giác DE của tam giác ADB; vẽ phân giác DF của tam giác ADC. Chứng minh: E A/EB . FC/FA . DB/DC = 1
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC).Biết AB =6cm,Bc=10cm
a,chứng minh rằng tam giác HBA đồng dạng vs tam giác ABC
b,Tính AC,AH,HB
c,I và K lần lượt là hình chiếu của điểmH lên AB, AC. CHứng minh rằng AI .AB=AK.AC
d,Vẽ phân giác của tam giác AD của tam giác ABC ( D thuộc BC).Đường phân giác DE của tam giác ABD(E thuộc AB),đường phân giác DF của tam giác ADC(F thuộc AC) chứng minh rằng EA/EB*DB/DC*FC/FA=1
Cho tam giác ABC vuông tại A có AB= 12cm; AC= 16cm; kẻ đường cao Ah.
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b) Tính BC, AH.
c) Vẽ phân giác AD của tam giác ABC. Tính BD, DC.
d) Vẽ phân giác DE của tam giác ADB; vẽ phân giác DF của tam giác ADC. Chứng minh: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC cân tại A với góc A = 108o. Vẽ các tia phân giác AD và BE (D thuộc BC ; E thuộc AC). Biết BE = 10 cm. Tính AD
Cho tam giác ABC vuông tại A có AB= 12cm; AC= 16cm; kẻ đường cao Ah.
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b) Tính BC, AH.
d)Trong tam giác kẻ phân giác AD( D thuộc BC) , Vẽ phân giác DE của tam giác ADB; vẽ phân giác DF của tam giác ADC. Chứng minh:
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
cho tam giác ABC vuông tại A, AB=12cm; AC=16cm. Vẽ đường cao AH (H thuộc BC). Đường phân giác BD của góc ABC cắt AH tại E ( D thuộc AC)
a) Chứng minh: AB^2 = BH.BC
b) Tính AD
c) Chứng minh: EA/EH = DC/DA
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )