Ôn tập toán 6

LV

 Cho \(n\) là số nguyên tố lớn hơn \(3\). Hỏi \(n^2+2006\) là số nguyên tố hay là hợp số?

VT
26 tháng 5 2016 lúc 18:03

Đặt n2 + 2006 = a2 (a Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (kN*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

Bình luận (0)
HM
26 tháng 5 2016 lúc 16:23

n là số nguyên tố lớn hơn 3 => n2 đồng dư với 1 (mod 3)

n2+2006 đồng dư với 1+2006 (mod 3)

<=> n+ 2006 đồng dư với 2007 (mod 3) đồng dư với 0 (mod 3) (*Vì 2007 chia hết 3*)

=> n2 +2006 chia hết 3

Vậy n2 +2006 là hợp số

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
PL
Xem chi tiết
NH
Xem chi tiết
PA
Xem chi tiết
HT
Xem chi tiết
YT
Xem chi tiết
TH
Xem chi tiết
YT
Xem chi tiết
NH
Xem chi tiết