Ôn tập toán 7

AV

Cho m,n \(\in N\)* và p là số nguyên tố thỏa mãn: \(\dfrac{p}{m-1}=\dfrac{m+n}{p}\).Chứng minh rằng : \(p^2=n+2\)

HQ
2 tháng 4 2017 lúc 9:43

Ta có: \(\dfrac{p}{m-1}=\dfrac{m+n}{p}\left(1\right)\)

Nếu \(m+n⋮p\)

\(\Rightarrow p⋮m-1\) do \(p\) là số nguyên tố và \(m,n\in N\)*

\(\Rightarrow\left[{}\begin{matrix}m=2\\m=p+1\end{matrix}\right.\) Khi đó từ \(\left(1\right)\) ta có: \(p^2=n+2\)

Nếu \(m+n⋮̸\)\(p\)

Từ \(\left(1\right)\Rightarrow\left(m+n\right)\left(m-1\right)=p^2\)

Do \(p\) là số nguyên tố và \(m,n\in N\)*

\(\Rightarrow\left\{{}\begin{matrix}m-1=p^2\\m+n=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=p^2+1\\n=-p^2< 0\end{matrix}\right.\) (loại)

Vậy \(p^2=n+2\) (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
LK
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
AV
Xem chi tiết
HN
Xem chi tiết
VK
Xem chi tiết
FA
Xem chi tiết
TM
Xem chi tiết