ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
a ) \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b )Tại \(x=3+2\sqrt{2}\Rightarrow\) \(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=2\)
c ) Dễ thấy \(\sqrt{x}>0\) . Để \(M< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp với điều kiện ban đầu \(\Rightarrow0< x< 1\)
a, ĐKXĐ: \(x>0,x\ne1\)
Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)
b, Ta có: \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
Với ĐKXĐ: \(x>0,x\ne1\)
Ta có: \(M=\dfrac{x-1}{\sqrt{x}}\)
Thay \(x=3+2\sqrt{2}\) vào M ta được:
\(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=\dfrac{2\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=2\)
Vậy M = 2 tại \(x=3+2\sqrt{2}\)
c, Để M < 0 thì \(\dfrac{x-1}{\sqrt{x}}< 0\)
mà theo ĐKXĐ,ta có: \(x>0\Rightarrow\sqrt{x}>0\)
=> Để \(\dfrac{x-1}{\sqrt{x}}< 0\) thì x - 1 < 0 => x < 1
=.= hk tốt!!