Chương I - Căn bậc hai. Căn bậc ba

JE

Cho M= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

a) Rút gọn M

b) tìm giá trị của M khi x= 3+ \(2\sqrt{2}\)

c) Tìm x để M<0

DD
3 tháng 3 2019 lúc 9:17

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a ) \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b )Tại \(x=3+2\sqrt{2}\Rightarrow\) \(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=2\)

c ) Dễ thấy \(\sqrt{x}>0\) . Để \(M< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp với điều kiện ban đầu \(\Rightarrow0< x< 1\)

Bình luận (0)
LA
3 tháng 3 2019 lúc 9:29

a, ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)

b, Ta có: \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

Với ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\dfrac{x-1}{\sqrt{x}}\)

Thay \(x=3+2\sqrt{2}\) vào M ta được:

\(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=\dfrac{2\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=2\)

Vậy M = 2 tại \(x=3+2\sqrt{2}\)

c, Để M < 0 thì \(\dfrac{x-1}{\sqrt{x}}< 0\)

mà theo ĐKXĐ,ta có: \(x>0\Rightarrow\sqrt{x}>0\)

=> Để \(\dfrac{x-1}{\sqrt{x}}< 0\) thì x - 1 < 0 => x < 1

=.= hk tốt!!

Bình luận (0)

Các câu hỏi tương tự
HS
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
LL
Xem chi tiết
NN
Xem chi tiết
NP
Xem chi tiết
MS
Xem chi tiết