Ôn tập chương I

SK

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng :

                            \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)

BV
17 tháng 5 2017 lúc 16:51

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) D = (10.84, -5.94) D = (10.84, -5.94) D = (10.84, -5.94)
Giả sử \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-\overrightarrow{MD}-\overrightarrow{MF}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+\left(\overrightarrow{MC}-\overrightarrow{MD}\right)+\left(\overrightarrow{ME}-\overrightarrow{MF}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{OB}+\overrightarrow{FE}=\overrightarrow{0}\) (Do tứ giác BCDO là hình bình hành).
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{EF}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (do tứ giác AOEF là hình bình hành).

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
KM
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết